推荐5部,豆瓣9分以上的电影,分别是:
《霸王别姬》、《楚门的世界》、《辛德勒的名单》、《三傻大闹宝莱坞》、《阿甘正传》
1、《霸王别姬》
《霸王别姬》1993年上映是汤臣电影有限公司出品的文艺片,改编自李碧华的同名小说,由陈凯歌执导,李碧华、芦苇编剧,张国荣、巩俐、张丰毅领衔主演。
这部电影改编自香港作家李碧华的同名小说《霸王别姬》,上映后,获得了第46届法国戛纳国际电影节金棕榈大奖等多项国际大奖和第66届奥斯卡金像奖最佳外语片的提名。
Ⅱ 豆瓣电影评分排行
豆瓣电影评分排行:
1、肖申克的救赎豆瓣评分9.6分
肖申克救赎是1994年由弗兰克·达拉邦撰写和指挥的美国戏剧电影,由蒂姆·罗宾斯和摩根·弗里曼主演。
这部电影讲述了安迪的故事,安迪是一名银行家,尽管他宣称无辜,但他被判处肖肖克国家监狱的谋杀他的妻子和她的情人。在监狱期间,他与一名囚犯埃利斯·博伊德,红色雷丁交友,并在监狱长开始使用他的洗钱行动后发现自己受到警卫的保护。
2、霸王别姬豆瓣评分9.5分
《霸王别姬》是汤臣电影有限公司出品的文艺片,该片改编自李碧华的同名小说,由陈凯歌执导,李碧华、芦苇编剧;张国荣、巩俐、张丰毅领衔主演。9岁的小豆子被做妓女的母亲切掉右手上那根畸形的指头后进入关家戏班学戏。
戏班里只有师兄小石头同情关照小豆子。十年过去了,在关师父严厉和残酷的训导下,师兄二人演技很快提高,小豆子取艺名程蝶衣,演旦角;小石头取艺名段小楼,演生角。俩人合演的《霸王别姬》誉满京城,师兄二人也红极一时。二人约定合演一辈子《霸王别姬》。
3、这个杀手不太冷豆瓣评分9.4分
《这个杀手不太冷》是由Luc Besson撰写和指导的1994年英语法语惊悚片。在影片中,莱昂,一个专业的杀手,不情愿地发生在12岁的玛蒂尔达,她的家人被谋杀损坏后,毒品管制局代理诺曼·斯坦斯菲尔德。
4、阿甘正传豆瓣评分9.4分
《阿甘正传》是1994年美国喜剧戏曲影片根据1986年的同名小说改编的由温斯顿·格鲁姆。这部电影由汤姆·汉克斯,罗宾·莱特·潘主演。
这个故事描述了阿拉巴马州的一个身材矮小但善良善良,善良,运动性很强的人物福雷斯特·甘普的生活中的几十年,他们目睹,在某些情况下影响了下半年的一些定义事件20世纪在美国;主要摄影发生在1993年底,主要在格鲁吉亚,北卡罗来纳州和南卡罗来纳州。
使用广泛的视觉效果将主角纳入归档的镜头,并开发其他场景。电影中有一个全面的配乐,使用的音乐旨在确定屏幕上刻录的特定时间段。它的商业发行使它成为畅销的配乐,全球销售超过1200万份。
5、美丽人生豆瓣评分9.5分
《美丽人生》是1997年由罗伯托·贝尼尼导演和主演的意大利喜剧电影。一个犹太意大利书店老板,他利用他的肥沃的想象力来保护他的儿子免受纳粹集中营的恐吓。这部电影的部分灵感来自于“最后”一书,由鲁比诺·罗密欧·萨尔蒙尼和贝尼尼的父亲打败希特勒,他在二战期间在德国劳教所工作了两年。
6、千与千寻豆瓣评分9.2分
《千与千寻》是2001年日本的动画幻想片,由宫崎骏编写,由吉卜力工作室制作。电影明星柊瑠美,入野自由,并讲述了一个十岁女孩的故事谁在搬到一个新的社区,进入精神世界。在她的父母被巫婆变成猪后,Chihiro在Yubaba的浴室工作,找到一种释放自己和她的父母并返回人类世界的方式。
7、辛德勒的名单豆瓣评分9.4分
《辛德勒的名单》是1993年美国史诗时代剧电影导演和联合制作的史蒂文·斯皮尔伯格和脚本史蒂文·萨利安。它是根据小说辛德勒方舟由澳大利亚小说家托马斯·肯利。这部电影涉及到德国商人奥斯卡·辛德勒的一生中,他在第二次世界大战期间,通过在他们的工厂里雇用了他们,在犹太人的大屠杀中救了一千多名波兰犹太难民的生命。
8、泰坦尼克号豆瓣评分9.2分/642380人评价
《泰坦尼克号》是英国客轮是在北大西洋沉没在凌晨1912年4月15日,之后将其与碰撞冰山其在处女航从南安普敦到新约克市。有一个估计的2224名乘客和船员在船上,和超过1500去世,使其成为致命商业的一个和平时期的海上灾难在现代历史。
RMS泰坦尼克号号是当时运载的最大的船只,是白星线运营的三个奥运级海洋船只中的第二艘。泰坦尼克号由贝尔法斯特的哈兰德和沃尔夫造船厂建造。她的建筑师托马斯·安德鲁斯死于灾难。
9、盗梦空间豆瓣评分9.2分
《盗梦空间》成立于2010年的科幻电影是由克里斯托弗·诺兰共同制作,由艾玛·托马斯联合制作的。电影明星莱昂纳多·迪卡普里奥是一名职业小偷,通过渗透潜意识窃取信息,并提供了一个机会,将他的犯罪记录消除为支付一个看似不可能的任务:“开始”,将另一个人的想法植入目标的潜意识。
10、机器人总动员豆瓣评分9.3分
《机器人总动员》是由安德鲁·斯坦顿为华特迪士尼图片制作的2008年美国计算机动画科幻喜剧片。它在一个荒废的世界跟随一个垃圾压实机器人,留下来清理一个被遗弃的城市。然而,他被一艘由Axiom船发出的探测器访问,他们爱上了并追求了这个星系。
Ⅲ 豆瓣电影数据分析
这篇报告是我转行数据分析后的第一篇报告,当时学完了Python,SQL,BI以为再做几个项目就能找工作了,事实上……分析思维、业务,这两者远比工具重要的多。一个多月后回过头来看,这篇报告虽然写得有模有样,但和数据分析报告还是有挺大差别的,主要原因在于:a.只是针对豆瓣电影数据分析太过宽泛了,具体关键指标到底是哪些呢?;b.没有一个确切有效的分析模型/框架,会有种东一块西一块的拼接感。
即便有着这些缺点,我还是想把它挂上来,主要是因为:1.当做Pandas与爬虫(Selenium+Request)练手,总得留下些证明;2.以豆瓣电影进行分析确实很难找到一条业务逻辑线支撑,总体上还是描述统计为主;3.比起网上能搜到的其他豆瓣电影数据分析,它更为详细,可视化效果也不错;
本篇报告旨在针对豆瓣电影1990-2020的电影数据进行分析,首先通过编写Python网络爬虫爬取了51375条电影数据,采集对象包括:电影名称、年份、导演、演员、类型、出品国家、语言、时长、评分、评论数、不同评价占比、网址。经过去重、清洗,最后得到29033条有效电影数据。根据电影评分、时长、地区、类型进行分析,描述了评分与时长、类型的关系,并统计了各个地区电影数量与评分。之后,针对演员、导演对数据进行聚合,给出产量与评分最高的名单。在分析过程中,还发现电影数量今年逐步增加,但评分下降,主要原因是中国地区今年低质量影视作品的增加。
另外,本篇报告还爬取了电影票房网( http://58921.com/ )1995-2020年度国内上映的影片票房,共采集4071条数据,其中3484条有效。进一步,本文分析了国内院线电影票房年度变化趋势,票房与评分、评价人数、时长、地区的关系,票房与电影类型的关联,并给出了票房最高的导演、演员与电影排名。
清洗、去重后,可以看到29033条数据长度、评分、评论数具有以下特点:
结合图1(a)(b)看,可以看到电影数据时长主要集中在90-120分钟之间,向两极呈现阶梯状递减,将数据按照短(60-90分钟),中(90-120分钟),长(120-150分钟),特长(>150分钟)划分,各部分占比为21.06%, 64.15%, 11.95%, 2.85%。
结合图2(a)看,可以看到我们采集到的电影数据评分主要集中在6.0-8.0之间,向两极呈现阶梯状递减,在此按照评分划分区间:2.0-4.0为口碑极差,4.0-6.0为口碑较差,6.0-7.0为口碑尚可,7.0-8.0为口碑较好,8.0-10.0为口碑极佳。
这5种电影数据的占比分别为:5.78%, 23.09%, 30.56%, 29.22%, 11.34%
再将评分数据细化到每年进行观察,可以发现,30年内电影数量与年度电影均分呈反相关,年度均分整体呈现下降趋势,2016年电影均分最低,电影数量最多。
进一步做出每个年份下不同评级等级的电影数据占比,可以发现,近年来,评分在[2.0,6.0)的电影数据占比有着明显提升,评分在[6.0,7.0)的数据占比不变,评分在[7.0,10.0)的数据占比减少,可能原因有:
对照图5,可以发现,评分与时长、评论人数的分布大致呈现漏斗状,高分电影位于漏斗上部,低分电影位于漏斗下部。这意味着,如果一部电影的评论人数很多(特别是超过30w人观影),时长较长(大于120min),那么它大概率是一部好电影。
根据各个国家的电影数量作图,可以得到图6,列出电影数量前十的国家可得表格2,发现美国在电影数量上占第一,达到8490部,中国其次,达6222部。此外,法国,英国,日本的电影数量也超过1000,其余各国电影数量相对较少。这可以说明美国电影有着较大的流量输入,在中国产生了较大的影响。
进一步分析各国电影的质量,依据评分绘制评分箱线图可得图7,在电影数量排名前20的国家中:
接着我们可以探索,哪个国家的电影对豆瓣评分随年份下降的贡献最大,考虑到电影数量对应着评分的权重。根据上述各国的电影评分表现,我们可以猜测电影数量较多的国家可能对年度均分的下降有较大影响。于是,我们再计算出这些国家的年度电影均分,并与整体均分进行比较分析。
再作出中国大陆,中国台湾,中国香港的均分箱线图图9(a),可以看到,大陆电影均分低于港台电影,且存在大量低分电影拉低了箱体的位置。
分析相关性可得,大陆、香港、台湾电影年度均分与全部评分关联度分别为R=0.979,0.919,0.822,说明滤去台湾和香港电影,大陆电影年度均分的变化趋势与全部评分变化更接近。图9(b)可以进一步反映这一点。
可以看到,大部分类型集中在X×Y=[10000,30000]×[6.00,7.50]的区间范围内,剧情、喜剧、爱情、犯罪、动作类电影数量上较多,说明这些题材的电影是近三十年比较热门的题材,其中剧情类电影占比最多,音乐、传记类电影平均得分更高,但在数量上较少,动作、惊悚类电影评论人数虽多,但评价普遍偏低。
除此之外,还有两块区域值得关注:
根据类型对电影数据进行聚合,整理得到各类型电影评分的时间序列,计算它们与整体均分时间序列的相关性,可得表格4与图11,可以看到剧情,喜剧,悬疑这三种类型片与总分趋势变化相关性最强,同时剧情、喜剧类电影在电影数量上也最多,因此可以认为这两类电影对于下跌趋势影响最大,但其余类别电影的相关性也达到了0.9以上,说明几种热门的电影得分的变化趋势与总体均分趋势一致。
前面已经得知,中美两国电影占比最高,且对于均分时间序列的影响最大。在此,进一步对两国电影进行类型分析,选取几种主要的类型(数量上较多,且相关性较高)进行分析,分别是剧情,喜剧,爱情,惊悚,动作,悬疑类电影,绘制近年来几类电影的数量变化柱状图与评分箱线图可得图12,13,14,15。
对导演与演员进行聚合,得到数据中共有15011名导演,46223名演员。按照作品数量在(0,2], (2,5], (5,10], (10,20], (20,999]进行分组统计导演数量,可以发现,15009名导演中有79.08%只拍过1-2部作品,46220名演员中有75.93%只主演过1-2部作品。忽略那些客串、跑龙套的演员,数据总体符合二八定律,即20%的人占据了行业内的大量资源。
在此,可以通过电影得分、每部电影评论人数以及电影数目寻找优秀的电影导演与演员。这三项指标分别衡量了导演/演员的创作水平,人气以及产能。考虑到电影数据集中可能有少量影视剧/剧场版动画,且影视剧/剧场版动画受众少于电影,但得分普遍要高于电影,这里根据先根据每部电影评论数量、作品数量来筛选导演/演员,再根据电影得分进行排名,并取前30名进行作图,可得图17,18。
结合电影票房网( http://58921.com/ )采集到的3353条票房数据,与豆瓣数据按照电影名称进行匹配,可以得到1995-2020年在中国大陆上映的电影信息,分别分析中国内地电影的数量、票房变化趋势,票房与评分、评价人数、时长、地区以及类型的关系,此外还给出了不同导演与演员的票房表现以及影片票房排名。
如图19所示,国内票房数据与上映的电影数量逐年递增,2020年记录的只是上半年的数据,且由于受疫情影响,票房与数量骤减。这说明在不发生重大事件的情况下,国内电影市场规模正在不断扩大。
对电影数据根据类型进行聚合,绘制散点图21,可以发现:
提取导演/演员姓名,对导演/演员字段进行聚合,计算每个导演/演员的票房总和,上映电影均分、以及执导/参与电影数目进行计算,作出票房总和前30名的导演/演员,可得图22,23,图中导演/演员标号反映了票房排名,具体每位导演/演员的上映影片数量、均分、每部电影评价人数、平均时长与总票房在表5、表6中给出。
最后根据电影票房进行排名,得到票房排名前20的电影如表格7所示,可以看到绝大部分上榜电影都是中国电影,索引序号为3、10、12、14、18、19为美国电影,这也反映了除国产电影之外,好莱坞大片占据较大的市场。
本篇报告采集了1990-2020年间豆瓣电影29033组有效数据,从豆瓣电影的评分、时长、地区、类型、演员、导演以及票房等信息进行分析评价,主要有以下结论: